同济大学化学科学与工程学院

张弛

作者:时间:2016-09-25点击数:

张弛 教授

张弛,博士,长聘特聘教授,博士生导师


同济大学化学科学与工程学院院长

中国-澳大利亚功能分子材料国际联合中心主任

科技部光响应功能材料国家级国际联合研究中心主任


联系电话

+86-21-65982680

办公地址

化学馆236室

E-mail

chizhang@tongji.edu.cn

个人介绍

一、研究方向

1. 卟啉/酞菁及其衍生物共价功能化石墨烯/碳纳米管理性设计、合成及三阶非线性光学性能

2. 过渡金属硫化物、硼酸盐、亚硒酸盐、碘酸盐晶体材料的设计合成及二阶非线性光学性能

3. 过渡金属功能簇合物/超分子聚集体的理性设计、合成组装及其三阶非线性光学性能

4. 石墨烯、半导体纳米量子点和低维半导体纳米异质结构的便捷合成及其光电性能

5. 低维无机-有机杂化功能分子、过渡金属硫属簇合物和超分子聚集体的荧光、磁化学行为

二、奖励与荣誉

1. 海外高层次人才引进计划-重点学科创新长期项目入选者

2. 国家杰出青年科学基金获得者

3. 教育部“长江学者创新团队发展计划”创新团队带头人

4. 科技部创新人才推进计划-重点领域创新团队负责人

5. 中国科学院“百人计划”择优支持项目入选者

6. 教育部高等学校科学研究优秀成果奖(自然科学奖)

7. Fellow of the Royal Society of Chemistry

8. Fellow of the Institute of Physics

9. Fellow of the Institute of Materials, Minerals and Mining

10. Fellow of the Institution of Engineering and Technology

11. 教育部、国家外专局高等学校学科创新引智基地负责人

12. 新世纪百千万人才工程国家级人选

13. 享受国务院特殊津贴专家

14. 中国侨界创新人才贡献奖 中国侨界创新团队贡献奖 中国侨界创新成果贡献奖

15. Research Fellow of Japanese Society for the Promotion of Science

16. Research Fellow of Alexander von Humboldt Foundation

三、学术兼职

1. 第七届教育部科学技术委员会材料学部委员

2. 中国侨联特聘专家委员会委员

3. 中国化学会理事

4. 中国光学工程学会常务理事

5. 中国科学院上海光学精密机械研究所兼职研究员

6. 哈尔滨工业大学兼职教授

7. 第五届江苏省自然科学基金委员会材料学专业委员会委员

8. 广东省光纤激光材料与应用技术重点实验室第一届学术委员会委员

四、学术成果

在材料学和化学国际学术期刊Journal of the American Chemical Society, Angewandte Chemie International Edition, Advanced Materials, Coordination Chemistry Reviews, Advanced Functional Materials, ACS Nano, Chemistry of Materials, Advanced Optical Materials, Nano Energy, ACS Catalysis, Nano Research, Chemical Communications, Carbon, Journal of Materials Chemistry A/C, ACS Applied Materials & Interfaces等上发表SCI论文约400篇,获授权国家发明专利30项。

五、科研项目

1. 主持国家自然科学基金重点项目-无机-有机杂化近红外非线性光学功能材料创制与性能研究

2. 主持国家杰出青年科学基金-结构导向的功能簇合物非线性光学性能调制研究

3. 主持国家自然科学基金面上项目-基于功能金属簇合物分子结构的非线性光学性能调制研究

4. 主持科技部国际合作重点项目-性能导向的近红外非线性光学无机-有机功能材料及器件研究

5. 主持教育部与国家外国专家局高等学校学科创新引智计划-功能分子、聚集体及器件创制

6. 主持教育部“长江学者和创新团队发展计划”创新团队择优滚动支持-光电功能分子材料

六、代表性论著

400 peer-reviewed articles with those selected publications listed as follows:

1. UV Solar-Blind-Region Phase-Matchable Optical Nonlinearity and Anisotropy in a p-Conjugated Cation-Containing Phosphate.

C. Wu, X.X. Jiang, Z.J. Wang, H.Y. Sha, Z.S. Lin, Z.P. Huang, X.F. Long, M.G. Humphrey, C. Zhang*,

Angewandte Chemie International Edition, 2021, 60(27), 14806-14810 (Hot Paper & Cover Picture).

2. Large Second-Harmonic Response and Giant Birefringence of CeF2(SO4) Induced by Highly Polarizable Polyhedra.

C. Wu, T.H. Wu, X.X. Jiang, Z.J. Wang, H.Y. Sha, L. Lin, Z.S. Lin, Z.P. Huang, X.F. Long, M.G. Humphrey, C. Zhang*,

Journal of the American Chemical Society, 2021, 143(11), 4138-4142 (Cover Figure).

3. Giant Optical Anisotropy in the UV-Transparent 2D Nonlinear Optical Material Sc(IO3)2(NO3).

C. Wu, X.X. Jiang, Z.J. Wang, L. Lin, Z.S. Lin, Z.P. Huang, X.F. Long, M.G. Humphrey, C. Zhang*,

Angewandte Chemie International Edition, 2021, 60(7), 3464-3468.

4. Modulation of Vomler Step for Efficient Alkaline Water Splitting implemented by Titanium Oxide Promoting Surface Reconstruction of Cobalt Carbonate Hydroxide.

L. Yuan, S. Liu, S.C. Xu, X.F. Yang, J.L. Bian, C.C. Lv, Z.Y. Yu, T. He, Z.P. Huang*, D.W. Boukhvalov*, C.W. Cheng, Y.Q. Huang, C. Zhang*,

Nano Energy, 2021, 82, 105732.

5. Electrical Tuning of the Fifth-Order Optical Nonlinearity of Antimony-Doped Tin Oxide.

R.P. Hou, H. Li, Y.H. Sun, M.J. Diao, Y. Liang, Z.P. Huang*, J. Wang*, M.G. Humphrey, C. Zhang*,

Advanced Optical Materials, 2021, 9(2), 2001357.

6. Reversible Electrical Tuning of the Optical Nonlinearity of Tungsten Oxide.

H. Li, R.P. Hou, Y.H. Sun, M.J. Diao, Y. Liang, X. Chen, Z.P. Huang*, J. Wang, M.G. Humphrey, Z.Y. Yu, C. Zhang*,

Advanced Optical Materials, 2021, 9(11), 2002188.

7. Triple Functions of Ni(OH)2 on the Surface of WN Nanowires Remarkably Promoting Electrocatalytic Activity in Full Water Splitting.

C.C. Lv, X.B. Wang, L.J. Gao, A.J. Wang, S.F. Wang, R.N. Wang, X.K. Ning, Y.G. Li, D.W. Boukhvalov, Z.P. Huang*, C. Zhang*,

ACS Catalysis, 2020, 10, 13323-13333.

8. Enhancement of Second-Order Optical Nonlinearity in a Lutetium Selenite by Monodentate Anion Partial Substitution.

C. Wu, L.H. Li, L. Lin, Z.P. Huang, M.G. Humphrey, C. Zhang*,

Chemistry of Materials, 2020, 32(7), 3043-3053.

9. AGa3F6(SeO3)2 (A = Rb, Cs): Polar Hexagonal Tungsten Oxide Materials with Strong Phase-Matchable Second Harmonic Generation Response.

C. Wu, X.X. Jiang, L.H. Li, Z.S. Lin, G. Yang, M.G. Humphrey, C. Zhang*,

Chemistry of Materials, 2020, 32(16), 6906-6915 (Front Cover).

10. Additive Polarization of Fluorinated 5d0-Transition Metal Chromophore Inducing Optimal Combination for Mid-Infrared Nonlinear Optical Material.

C. Wu, L. Lin, X.X. Jiang, Z.S. Lin, Z.P. Huang, M.G. Humphrey, P.S. Halasyamani, C. Zhang*,

Chemistry of Materials, 2019, 31(24), 10100-10108.

11. Graphene and Carbon-Nanotube Nanohybrids Covalently Functionalized by Porphyrins and Phthalocyanines for Optoelectronic Properties.

A.J. Wang, J. Ye, M.G. Humphrey, C. Zhang*,

Advanced Materials, 2018, 30(17), 1705704 (Front Cover).

12. Nickel-based (Photo)electrocatalysts for Hydrogen Production.

L.L. Ji, C.C. Lv, Z.F. Chen*, Z.P. Huang*, C. Zhang*,

Advanced Materials, 2018, 30(17), 1705653.

13. Recent Advances in Ultraviolet and Deep-Ultraviolet Second-Order Nonlinear Optical Crystals.

C. Wu, G. Yang, M.G. Humphrey, C. Zhang*,

Coordination Chemistry Reviews, 2018, 375, 459-488.

14. A Self-Supported Porous Hierarchical Core Shell Nanostructure of Cobalt Oxide for Efficient Oxygen Evolution Reaction.

H. Xia, Z.P. Huang*, C.C. Lv, C. Zhang*,

ACS Catalysis, 2017, 7(12), 8205-8213.

15. A Nitrogen Doping Method for CoS2 Electrocatalysts with Enhanced Water Oxidation Performance.

J.H. Hao, W.S. Yang, Z. Peng, C. Zhang*, Z.P. Huang*, W.D. Shi*,

ACS Catalysis, 2017, 7(6), 4214-4220.

16. One-Pot Synthesis of Diiron Phosphide/Nitrogen-Doped Graphene Nanocomposite for Effective Hydrogen Generation,

Z.P Huang*, C.C. Lv, Z.Z. Chen, Z.B. Chen, C. Zhang*,

Nano Energy, 2015,12, 666–674.

17. Ni12P5Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis.

Z.P. Huang*, Z.B. Chen, Z.Z. Chen, C.C. Lv, H. Meng, C. Zhang*,

ACS Nano, 2014,8(8), 8121-8129.

18. Cobalt phosphide nanorods as an efficient electrocatalyst for hydrogen evolution reaction.

Z.P. Huang*, Z.Z. Chen, Z.B. Chen, C.C. Lv, M.G. Humphrey, C. Zhang*,

Nano Energy, 2014,9, 373-382.

19. Enhanced Photoelectrochemical Hydrogen Production Using Silicon Nanowires@MoS3.

Z.P. Huang*, C.F. Wang, L. Pan, F. Tian, X.X. Zhang, C. Zhang*,

Nano Energy, 2013, 2(6), 1337-1346.

20. Dodecanuclear-Ellipse and Decanuclear-Wheel Nickel(II) Thiolato Clusters with Efficient Femtosecond Nonlinear Absorption.

C. Zhang*, T. Matsumoto, M. Samoc, S. Petrie, S.C. Meng, T. Christopher Corkery, R. Stranger, J.F. Zhang, M.G. Humphrey, K. Tatsumi,

Angewandte Chemie International Edition, 2010,49(25), 4209-4212 (Front Cover).

21. Modulation of Third-Order Nonlinear Optical Properties by Backbone Modification at Polymeric Pillared-Layer Heterometallic Clusters.

C. Zhang*, Y. Cao, J.F. Zhang, S.C. Meng, T. Matsumoto, Y.L. Song, J. Ma, Z.X. Chen, K. Tatsumi, M.G. Humphrey,

Advanced Materials, 2008,20(10), 1870-1875.

22. Correlations between molecular structures and third-order nonlinear optical functions of heterothiometallic clusters: A comparative study.

C. Zhang*, Y.L. Song, X. Wang,

Coordination Chemistry Reviews, 2007,251(1-2), 111-141.

23. New Nickel(II) Thiolato Clusters with A Flexible Cyclo-Ni10S20Framework.

C. Zhang, S. Takada, M. Kölzer, T. Matsumoto, K. Tatsumi*,

Angewandte Chemie International Edition, 2006,45(23), 3768-3772 (Frontispiece).

24. Ultrafast response and superior optical limiting effects of the planar 'open' heterothiometallic clusters.

C. Zhang*, Y.L. Song, F.E. Kühn, Y.X. Wang, X.Q. Xin, W.A. Herrmann,

Advanced Materials, 2002,14(11), 818-822.

科技部“光响应功能材料国家级国际联合研究中心”热诚欢迎具有无机合成、有机合成、高分子合成及无机-有机功能材料制备等学习或工作背景、学术思想活跃的优秀本科生、硕士和博士研究生及具有博士学位的优秀研究人员加盟,精诚合作,共同发展,开创精彩学术人生。

上一条:路庆华 下一条:赵国华

Copyright © 2020 同济大学化学科学与工程学院   【后台登陆】